Exercise 1.48

Find the vector product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$ (expressed in unit vectors) of the two vectors given in Exercise 1.42. What is the magnitude of the vector product?

Solution

The two vectors from Exercise 1.42 are

$$
\begin{aligned}
& \mathbf{A}=4.00 \hat{\boldsymbol{i}}+7.00 \hat{\boldsymbol{j}} \\
& \mathbf{B}=5.00 \hat{\boldsymbol{i}}-2.00 \hat{\boldsymbol{j}} .
\end{aligned}
$$

They're illustrated in the $x y$-plane below.

The vector (cross) product is obtained by evaluating a 3×3 determinant.

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
4.00 & 7.00 & 0 \\
5.00 & -2.00 & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
7.00 & 0 \\
-2.00 & 0
\end{array}\right| \hat{\boldsymbol{i}}-\left|\begin{array}{ll}
4.00 & 0 \\
5.00 & 0
\end{array}\right| \hat{\boldsymbol{j}}+\left|\begin{array}{cc}
4.00 & 7.00 \\
5.00 & -2.00
\end{array}\right| \hat{\boldsymbol{k}} \\
& =[(7.00)(0)-(0)(-2.00)] \hat{\boldsymbol{i}}-[(4.00)(0)-(0)(5.00)] \hat{\boldsymbol{j}}+[(4.00)(-2.00)-(7.00)(5.00)] \hat{\boldsymbol{k}} \\
& =0 \hat{\boldsymbol{i}}-0 \hat{\boldsymbol{j}}-43.00 \hat{\boldsymbol{k}} \\
& =-43.00 \hat{\boldsymbol{k}}
\end{aligned}
$$

Its magnitude is

$$
|\mathbf{A} \times \mathbf{B}|=\sqrt{(-43.00)^{2}}=43.00 .
$$

